Mathematical Parables

Examples of mathematicians assisting each other and building
upon instead of fearing their differences serve as modern parables
Jor bandling our own differences as scholars and friends.

J. W. Cannon

William P. Thurston, the best geometer in the world today,
always wore plaid shirts and stretch denim jeans in his younger
years. My children thus consider plaid shirts and stretch denim
jeans standard costume for mathematicians. When Bill was to give
the final talk of the International Congress of Mathematicians in
Helsinki, we all wondered how he would dress for this formal
occasion. Would he wear a plaid shirt and stretch denim jeans?
Or would he succumb to the pressures of public appearance and
dress in formal or semiformal attire? We watched from far back in
the huge audience. He had indeed succumbed to societal pres-
sures: he had ironed his plaid shirt.

A recent essay discusses academic dress and makes the fol-
lowing assertion: academic people dress with a formality inversely
proportional to the confidence they have in their subject. Without
doubt, said the essay, mathematicians are the worst dressed among
all academics, since they have the most confidence in the reliabil-
ity of their discipline. You can guess for yourself which depart-
ments were found to have the best-dressed professors. And
tonight—well, you can guess from my black tuxedo and pleated
white shirt just how much confidence I have in what I am going
to say.

Elaine Sorensen congratulated me shortly after the Maeser
Lecture was announced and said, “My only disappointment is
that the committee still hasn’t chosen a woman for the award.”
Her point was well taken. The Maeser Lecture is designed to
honor an endeavor rather than a person. The lecturer represents a
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group of people who find academic life important and satisfying.
The lecturers need to represent over time all of the large seg-
ments of this striving population, including women. The speak-
ers are viewed as a little more important than they are because
they represent not only the reality, but the aspirations of the pop-
ulation. Most of us can appreciate and hope for better things than
we can actually accomplish.

Some would say that research and creative arts aren’t that
important in the eternal perspective. And in saying so they may be
right. But this work, for me as a mathematician at least, is the best
work that I can do, and I would be wrong to give it up for some-
thing that is even less important. It beats watching television by a
country mile.

Some Generalizations about Mathematicians

Let us begin with a few general questions about mathemati-
cians. These questions are representative of the ones I'm most
often asked.

Regarding the traditional mathematics professor, George
Polya, a Hungarian mathematician, wrote:

The traditional mathematics professor of the popular legend is
absentminded. He usually appears in public with a lost umbrella in
each hand. . . . He writes a, he says b, he means ¢; but it should be
d. Some of his sayings are handed down from generation to genera-
tion. . . . [For example], “This principle is so perfectly general that
no particular application of it is possible.

Geometry is the art of correct reasoning on incorrect figures.”

After all, you can learn something from this traditional mathe-
matics professor. Let us hope that the mathematics teacher from
whom you cannot learn anything will not become traditional.’

How Does a Mathematician Work? Bill Floyd and his
father are mathematicians. The elder Floyd was long-time provost
of Thomas Jefferson’s University of Virginia. Son Bill wanted to
become a botanist, but in deference to his father, he applied to one
graduate school in mathematics. Princeton accepted him. Com-
menting on the mathematician’s thought process, Bill says, “R. H.
Bing said he only worked on problems that you could think about
while mowing the lawn. Any problem I've worked on I could think
about while on a hike.””
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Why Do People Become Mathematicians? G. H. Hardy
wrote concerning the lure of mathematics:

It is sometimes suggested, by lawyers or politicians or business men,
that an academic career is one sought mainly by cautious and unam-
bitious persons who care primarily for comfort and security. The
reproach is quite misplaced. . . . [The mathematician] would have
rejected their careers because of his ambition, because he would
have scorned to be a man to be forgotten in twenty years.

A mathematician, like a painter or a poet, is a maker of pat-
terns. If his patterns are more permanent than theirs, it is because
they are made with ideas.

The mathematician’s patterns, like the painter’s or the poet’s,
must be beautiful; the ideas, like the colours or the words, must fit
together in a harmonious way. Beauty is the first test: there is no per-
manent place in the world for ugly mathematics.?

Why Does Mathematics Exist? Science and mathematics
exist because the universe is patterned. Mathematics is simply the
study of these patterns, especially of their logical structure. Sci-
ence decides whether a given pattern proposed by a mathemati-
cian does or does not approximate a specific aspect of reality.

People are amazed at the applicability of mathematics. For
example, physicist Steven Weinberg writes about the application
of linear algebra and matrix theory to Heisenberg’s matrix mechan-
ics, “This is one example of the spooky ability of mathematicians
to anticipate structures that are relevant to the real world.”* The
mathematician would reply, “I wouldn’t be a very good mathe-
matician if I couldn’t recognize fundamental patterns in the world
around me.”

Is Mathematics Worth Anything in the Real World? I al-
ways laugh inwardly when people ask, Is mathematics worth any-
thing in the real world? Studying the patterns inherent in God’s
universe always seems more real to me than watching real-world
television or engaging in real-world business. The mathematician
wants to understand—to understand everything! The great Ger-
man mathematician David Hilbert formulated this motto: “Wir
mussen wissen. Wir werden wissen.” “We must know! We will
know!”> If mathematicians and scientists keep their eyes open for
the richest and most significant patterns apparent about them,
they can hardly avoid developing important results.
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Consider three of the great scientific developments of this
century: relativity theory, quantum mechanics, and the science of
computing. Surely you will have a hard time finding three devel-
opments that have had a more profound effect on our world in this
century. You may consider two of them as physics and the third as
engineering, and they are. But each was founded in very large mea-
sure upon mathematics.

Einstein founded relativity theory on the mathematical prin-
ciple of geometric invariance. The mathematics he used was the
differential geometry of Gauss, Riemann, Poincaré, and Levi-Civita.

In his development of quantum mechanics, Erwin Schrodinger
found exactly the mathematical methods he needed in the work of
David Hilbert.® Concerning the discovery, Schrodinger wrote:

It works!—the magnificent classical mathematics and the mathemat-
ics of Hilbert. These unfold everything so clearly before us, that all
we have to do is to take it, without any labour and bothering;
because the correct method is provided in time, as soon as one
needs it, completely automatically.’

Mathematical logicians supplied the foundation for modern
computing. Kurt Godel, Emil Post, Steven Kleene, Barkely Rosser,
Alan Turing, and others answered the question, What does it mean
to calculate something? They found that all known methods of cal-
culation can be reduced to procedures so simple that they can be
implemented in a mechanical way. Based on this logic, another
mathematician, John von Neumann, developed the idea of the
stored computer program. With new developments in electronics,
computers were on their way.

Do Mathematicians Delight in the Uselessness of Math-
ematics? Mathematicians have sometimes resisted being told
by others what is real and what is important. The mathemati-
cian’s point of view is well illustrated by several paintings of the
Flemish painter Peter Bruegel the Elder. It would be helpful to
refer to a collection of Bruegel’s paintings, such as Marguerite
Kay’s book Bruegel.®

Ask yourself in each instance, What is the important issue at
stake in the painting? As with mathematics, the important issue is
not always obvious at first glance, and our experience may not
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make obvious what is important; therefore, we may have to be
educated to realize that certain issues are critical.

First consider The Numbering at Bethlebem. The scene is a
typical Flemish village, midwinter, with peasants walking or skat-
ing on a frozen river or lake, village children playing, and many
people clustering around a rather prominent house in the lower-
left foreground. Have you recognized the obvious fact that there is
no room in this inn? Did you find Mary and Joseph and the don-
key? Did you understand that one of the key moments of earthly
existence is about to take place?

You won’t have as much trouble with the next picture
because you now know what to look for. The painting is entitled
I'be Procession to Calvary and the scene is, of course, of Flemish
peasants pursuing their everyday tasks. Far away on the hill stands
a circle of people so distant as to be almost invisible. Upon close
examination, you see that they are awaiting some special event.
You are struck by the colorful red cloaks worn by a rather long
procession of horseback riders. Almost invisible in the center of
the painting is a man fallen upon his knees with a cross over his
shoulder. The largest figure in the painting is beautiful: a woman
in the lower-right corner who clearly sorrows and is being com-
forted by three companions—one male and two female.

In a third painting, The Conversion of St. Paul, you might
have a little trouble identifying the important factors in the
scene without some coaching from the artist. Business travelers in
ancient costume with a Flemish flare are toiling up a dirt-covered
mountain road. Amidst some very large trees, far away and some-
what in the background, many people surround a fallen traveler.
One companion shades his eyes as he stares into the sky. Most of
the travelers see nothing unusual or ignore what is happening.
Would you, as an outsider, want to tell Paul what is really impor-
tant at this moment? If he heard you at all, he might find your intru-
sion irritating.

Mathematicians care very much about the applications of
their mathematics. As with Bruegel’s work, the applications they
have in mind, however, may have little to do with the ones you
think they ought to have in mind.
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How Do Mathematicians Choose What to Study? Much of
mathematics is devoted to problems with an immense history.
No field has a richer tradition. Most mathematical problems are too
difficult to solve. Many mathematicians hack away at these old, dif-
ficult problems, bringing the difficulties into better focus, perhaps
revealing new vistas and resolving old difficulties. But mathemati-
cians are ready to consider any rich and interesting pattern, new or old.

What Is It Like to Be a Mathematician? My children say
that only the children of mathematicians want to be mathemati-
cians. I consider the life of a mathematician personally exciting.
Mathematics has given me friends spread over the world and over
time. I have spent days with the Greeks who lived hundreds of
years before Christ—with Euclid, Eudoxus, Archimedes, Pythago-
ras, and Apollonius. I have spent months with Newton, with Euler,
with the Bernoullis, with Gauss, Riemann, Poincaré, and Hilbert.
I have personal friends on each continent and have traveled,
because of mathematics, to four of the continents. I have personal
mathematical friends in almost every state of the Union and in
many foreign countries. They have invariably treated me with kind-
ness and consideration and respect.

Let me give you an idea of the life of mathematics by outlin-
ing in the next section a problem in which I have been involved.
It is not the most important problem in mathematics—only the
best I can do. The account will be simplified. A reporter suggested
to physicist Richard Feynman that he might respond to the ques-
tion, “What did you win the [Nobel] Prize for?” with “Listen,
buddy, if I could tell you in a minute what I did, it wouldn’t be
worth the Nobel Prize.”” Of course, I haven’t won the Nobel Prize.
Mathematicians don’t have a Nobel Prize. They have a Fields
Medal.'* And I haven’t won the Fields Medal, and won’t, since it is
given only to mathematicians under the age of forty. As I discuss
some general goals, ideas, and events, you may be able to gain a
feeling for what it is like to be a mathematician.

Mathematical Parallels, or Parabolas:
The Double Suspension Problem

Both parable and parabola mean to set beside or in parallel.
Our mathematical parallels are called parabolas while our people
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parallels are called parables. I will start with parabolas. The parabolas
[ consider are geometry versus algebra and large versus small.

Geometry versus Algebra. Our models of space are built on
line and number, geometry and algebra, respectively. In ancient
Greece, the Pythagoreans viewed the entire universe as built upon
number. They imagined the line as a succession of indivisible
objects that could be counted, like beads on a string. When Hip-
pasus, one of their colleagues, proved that this view was wrong,
they were so shocked they drowned him in the sea.''! Being a
mathematician is sometimes dangerous.

History has since modified our vision of line and number. For
millennia, the number zero was not recognized as a number—
it was a nothing. In the first century after Christ, someone intro-
duced zero as a placeholder. Arithmetic as we know it, however,
was not widely accepted until A.p. 1300. Finger arithmetic was
standard fare in books as recently as A.p. 1500.'4

Beginning with the eighteenth century, the concepts of line
and real number were fused, setting the stage for a unified geo-
metric-arithmetic model for space. A number became simply a
point in the line, and the line could be viewed as a varying num-
ber. The line was the basis for one-variable mathematics.

One variable, however, is not enough to measure a complex
world. Are three space variables enough? Does it make any sense
to talk about space with more than three or four variables?

Mathematician Mary Ellen Rudin once wrote in a letter:

My one total disaster [as a speaker]| was a talk that I gave to the win-
ners of Presidential awards for high school science teaching. It was
at the State Department. The law forbade me to have any visual aid.
[ could only wave my hands. I'm not sure a single non-Ph.D. mathe-
matician in the room understood anything I said. I got exactly one
question, asked by perhaps 15 different people: “How can one pos-
sibly have more than 4 dimensions?”"’

Mary Ellen Rudin grew up in a small Texas town. She wrote
more than seventy research papers while tending her small chil-
dren in her very open home designed by Frank Lloyd Wright. She
covered the dangerous gaps in the open stairway with fishnet until
the children were old enough to be safe from falling.

[ should at this point ask a mother with six children (Mary
Ellen had only four) to explain how many variables complicate her
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life. If she can get by with three variables, she has either lost four
children or three children and their father.

Life is high dimensional. The mathematics of life is equally
high dimensional. As one might say, the complications of life are
manifold; manifold is the name given to a mathematical model
with more than one variable. The mathematical term manifold
should be learned by every educated person.

A robot arm formed from
links illustrates the term mani-
fold. The position of each link,
relative to the previous link, is
given by one variable. Each link
raises the mathematical descrip-
tion of the arm by one dimen-
sion. Robot arms with six links
have been built. The possible
positions of such an arm re-
quire six variables for their |
descriptions and therefore form
a manifold of six dimensions. !

Helaman Rolfe Pratt Fergu-
son is a noted Mormon mathe-
matical artist who believes in the
power of high-dimensional art. A robot arm. This robot arm is an
He asks the question, “Why does example of the high dimensional-
a sculpture affect us more when ity of life. The position of elach link
we see it in person than when we e IZ)E deﬁmd by o ﬁvam.b b

one dimension. Because this arm
see a picture?” His answer? "The 1. ¢ 146 free joints, a specific posi-
physical viewing of sculptur€ isa  jon of the arm must be described
high-dimensional event.” Fergu- in terms of two dimensions.

SONn comments:

In examining sculpture, one should use all of the body, not just
the eyes. Our feet supply a dimension that brings us in proximity
to the object. In order to feel the object we bring into play the joints
of feet, ankles, knees, waist, neck, shoulders, elbows, wrists, and fin-
gers. The nerve impulses from fingertips and palms add to the sensory
perception. With truly binocular vision at play with the twelve ocular
muscles, with all of the muscles and joints and nerves sending their
separate messages to our brains, when we view and feel the object at
close range, we get a huge-dimensional view of a physical sculpture.'
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Manifolds can be geometrically beautiful. They can be curved.
They are generally very high dimensional. The notion of a manifold
is much more basic to physics and mathematics than the better-
known notions of a black hole, quasar, neutrino, or big bang. (This
last point reveals the difference between mathematicians and
physicists: physicists are better at advertising their work. If mathe-
maticians solving some equations discover a singularity in the solu-
tion, they report, “There is a singularity in the solution of these
equations.” On the other hand, if physicists discover the same sin-
gularity by the same methods, they say, “The universe was created
with a Big Bang [read, singularity in an equation]. Give us a billion
dollars to study it.”)

From 1821 until 1848, Karl Friedrich Gauss!> conducted
extensive geodetic surveys. (Geodesy is a branch of mathematics
involving features of the earth, like surface, shape, size, and grav-
ity.) These surveys suggested problems connected with curved
surfaces. The resulting studies began the mathematics of relativity
and the geometric study of manifolds.®

Gauss was followed by Bernhard Riemann, born in Germany
in 1826, the son of a Lutheran pastor. In 1857, at the age of thirty-
one, Riemann became an assistant professor. On his minuscule
salary, he supported himself and three sisters. Riemann married
at the age of thirty-six, but he contracted tuberculosis and died at
the age of thirty-nine: “He said to [his wife], ‘Kiss our child. She
repeated the Lord’s prayer with him; . . . at the words ‘Forgive us
our trespasses’ he looked up devoutly; she felt his hand grow
colder in hers. He served his God faithfully, as his father had, but
fferent way.”!’

Riemann revolutionized everything he touched. With Gauss,
he fathered the geometry that led to relativity theory.'® Here is how
Riemann explained the notion of manifold to the general audience:

in a di

If one travels in a continuous manner from one position to another,
then the intermediate points through which one travels form a one-
fold manifold. We then think of this entire one-fold manifold sliding
from its given position over into another completely different posi-
tion so that every point of the first passes into a specific point of the
second. The simple manifold, by its motion, sweeps out what we call
a two-fold extended manifold. And it is easy to imagine continuing
this construction into arbitrarily many dimensions."
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At the turn of the century, Henri Poincaré was the world’s
greatest mathematician. With H. A. Lorentz and Albert Einstein, he
discovered the theory of special relativity, based on the theory of
curved manifolds. Poincareé studied the properties of manifolds by
means of a new method that we now call topology. (I consider
myself a topologist.) Poincaré explained: “Topology allows us to
recognize qualitative relations in spaces of more than three dimen-
sions. Topology renders service analogous to that rendered in low
dimensions by pictures.”*

In summary, the most common mathematical model of space
is the manifold, based on many variables, each variable being a
number that as it varies, sweeps out a constituent direction or line
in the manifold. This fusion of line, number, manifold, and space
completes our first mathematical parallel or parable. Our second
parabola is more modern, more specialized. It concerns the topol-
ogy of manifolds. Here we are concerned with the conflict be-
tween the very large and very small.

Large versus Small. People have always disagreed about the
most important things to study. For example, are big things more
important, or are little things? Relativity theory studies big things;
quantum theory, small things. Manifolds are a good model for
relativity theory, a poor model for quantum theory. Hence, two
schools of thought have developed. One says only the large-scale
structure of manifolds is important. The second says anything that
happens in the small happens in the large and vice versa. Both
small and large are important. The theories of small and large
developed independently according to the thought and taste of the
participants. An advocate of the large view was John Milnor of
Princeton University. An advocate of the small view was R. H. Bing
from Texas.

In an undergraduate class at Princeton University, freshman
John Milnor solved within a week the problem his professor posed
as an illustration of an important unsolved problem in mathematics.?!
Milnor went on to a brilliant career and became a Fields Medal-
ist.** He claimed we should study high dimensions algebraically and
prove theorems about infinitely many dimensions at once.

R. H. Bing, on the other hand, was a high-school football
coach from Texas. The stereotypical complaint of mathematicians
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about high-school education is that the football coach is asked to
teach mathematics classes although the stereotypical football
coach scores lower than his students on standardized exams. Bing,
however, was a football coach who went on to become president
of both the American Mathematical Society and the Mathematical
Association of America and was elected to the National Academy
of Sciences. He never lost his love for football, once paying $700
for tickets to the Texas-Oklahoma football game. He loved to show
just how surprising things could be, and he gave wonderful names
to his examples. Thanks to him we now talk of the “Bing Sling,” the
“Dogbone Space,” the “Hooked Rug,” “Crumpled Cubes,” and many
more. In a deep Texas accent, he spoke of “epslums and deltas,” of
“baseball moves” and “pill boxes.”* Bing’s central claim was that
we should really understand low dimensions with all of their
warts. We should understand geometry geometrically and develop
specific examples.

Hooked Rug Bing Sling

We will call the two schools of thought developed by Milnor
and Bing the Princeton School and the Texas School. The Prince-
ton School approached things from an algebraic and global point
of view. The Texas School approached things from a geometric and
local point of view. The Princeton School felt that they had devel-
oped the algebra to the point where they almost had the whole
story figured out. The Texas School developed complicated
counter examples showing that things weren’t as simple as the
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Princeton School supposed. The Princeton School discounted
the examples because the Texas School used limiting arguments
that made sense only in the small.

Then the Princeton School ran up against a paradox. The
5-sphere is a well-known manifold that can be pieced together
from eight 5-dimensional diamonds. The Princeton School, how-
ever, discovered another important 5-dimensional space that could
be pieced together from twelve 5-dimensional diamonds. The new
space satisfied all of their global prejudices. By their algebraic meth-
ods, the new space was indistinguishable from the 5-sphere. If the
new space were a manifold, it could be only the 5-sphere. How-
ever, geometrically it obviously was not the 5-sphere because the
only possible way it could be the 5-sphere would be that four
edges of the twelve diamonds were “infinitely knotted” in the
space. But how can a straight edge of a flat polyhedral space be
infinitely knotted in that flat space?

The Princeton School was caught in a quandary. Either this
space was not a manifold and their algebraic methods were inade-
quate to the task of understanding manifolds, or this space was a
manifold and polyhedral pieces could be infinitely knotted, an
absurd idea. The issue at stake was this: are global methods ade-
quate to study things in the large, or must one study vanishingly
small things to understand large things? Milnor asked the incon-
ceivable: is it possible this space is a manifold?** This question
became known as the famous double suspension problem. Is the
double suspension of a homology sphere a manifold?

One of my very good instructors at the University of Utah, Les
Glaser, soon proposed a proof showing that the space was not a
manifold.” The idea of the proof was really clever. It used local
limiting techniques inspired by Bing’s work. Unfortunately, the
proof was incorrect.”® Making mistakes in mathematics is so easy.
Everyone makes them. You try to catch your own. If you don’t,
someone else catches them for you. Slowly, the difficulties are
understood and ironed out.

My story now leaves the question of mathematical taste in the
United States during the 1960s and moves to Russia. The account
here is most complicated. I leave it purposely confusing because I
originally found it so myself.
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M. A. Stan’ko, a young Russian
mathematician, decided to see whether
it is always possible to unknot an infi-
nitely knotted object that is in high-
dimensional space.”’ His idea was this:
look at a three-dimensional slice of that
high-dimensional space. The part of the
space that sticks into that slice is knot-
ted in ways that we understand. If we
aren’t too fussy, we can unknot a knot-
ted set in three-dimensional space by
simply cutting apart any knotting that
we see, rearranging the strands so they
no longer look knotted, and fusing (tap-

M. A. Stan’ko. Stan’ko, a

Russian mathematician,
provided one of the cru- 1ng?) them back together in an unknot-

cial ideas used to solve ted position. Alternatively, we can think
the double suspension of one strand as being physically trans-
problem. 1971. Courtesy  parent to any other strand so that the

Robert J. Daverman. strands can simply be unknotted by pull-

ing them through one another.

But what are we to do with the part of the space that is all
around the three-dimensional slice that we have chosen? We have
to move the parts of the space in nearby slices as well. And in the
nearby slices we do not have the same control that we had in
the slice that we were viewing. Things that weren’t tangled
become tangled, and strands that had missed one another hit one
another. It is one big mess!

Stan’ko noticed that, if he were to look ahead, he could pre-
pare for the problem in advance by first moving some things out
of the way in nearby slices. But moving things out of the way in
nearby slices creates the same type of unknotting problem found
in the first problem. But that difficulty can again be solved by look-
ing ahead and pushing things out of the way of the things that
need to be moved out of the way. But this third move can be pre-
pared for by a still earlier fourth move, which can be prepared for
by a still earlier fifth move, and so forth. That is, we only have to
look ahead infinitely many steps. We do these infinitely many
steps, infinitely often, in infinitely many carefully chosen places,
and the unknotting problem is solved!
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Did you follow Stan’ko’s argument? Neither did I. I stared at
the critical four pages of his paper®® every day for a month. His
idea, whatever it was, seemed really important, and I was deter-
mined to understand it. And then all at once I saw how simple it
was. Trivial! as they say in mathematics.

Stan’ko’s argument did not apply in all of the places that we
would have liked, but we believed that just a little effort would
make it work every place. Stan’ko thought so, and he published
another short paper to that effect.”” I was so convinced that it
would work in general that I assigned the problem to Ric Ancel, a
graduate student. However, Stan’ko’s argument had not been car-
ried out carefully enough. Ric worked unsuccessfully for a year to
extend the Stan’ko techniques. People all over the United States
set about extending his techniques—all without success. I thought
the extension should be an easy one. Then I learned that Bob
Daverman at Tennessee had tried unsuccessfully, that Bob Edwards
at UCLA had tried unsuccessfully, and that Stan’ko himself had
tried unsuccesstully. I started teeling guilty. An advisor is supposed
to pick solvable problems for his students.

Ric and I decided to work together on the problem. It was a
hot, Wisconsin summer. Every day we would sit sweating in our
offices and push the problem around for hours at a time. After one
and a half months of steady work, we gave up. It was too hard.
We could push the difficulty to one side or the other, but always it
would reappear someplace else. We decided to work on some-
thing else, and we got really involved in the new problem—to such
a degree, in fact, that I started to dream about it. One night at
2:00 A.M., my eyes suddenly popped open. I sat up in bed next to
Ardyth. I knew how to extend Stan’ko’s techniques. I do not know
how the answer came to me. I couldn’t sleep. I dressed quietly and
went walking on the dark streets of Madison. No one was around.
I checked the ideas for all of their consequences. I checked for
absurdities. I couldn’t find any. The picture was wondertul.

Earlier, fixing one difficulty had created new difficulties. The
solution was simple: push one point, but in the push don’t disturb
any of the point’s neighbors, and don’t tear it way from its neigh-
bors. Yes, it’s a simple solution. The only problem is that it is
impossible to do. If you don’t allow tearing, then moving one
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point will inevitably move neighboring points. Such an action is
simply impossible, unless the point is a really big point! But points
have size zero. Now, the real nature of the solution was this:
decide which points needed to be moved; increase the size of each
point that had to be moved by expanding it into a ball or disk;
then, keeping the boundary of the disk fixed so as to not disturb
surrounding points, move the inside of the disk. Carry out this
process for all of the (infinitely many) points that had to be moved.
After this had been done so as to untie all of the infinitely many
knots, shrink all of the expanded points back down to real points.
The process was exactly the Stan’ko process, except that each step
had now been fractured into three substeps, each of which could
be performed in a completely controlled way that did not create
new difficulties. The next morning, I showed Ric the idea. It was
technically difficult to carry out, and it took him a full year of fur-
ther work to write his thesis.*

Bob Edwards also worked on the Stan’ko problem. He had
grown up on Long Island and studied at the University of Michi-
gan. He has served for many years as a mathematical ambassador
in geometry and topology, taking the news around and helping
other people with ideas. After spending months on the Stan’ko
work, he found that Stan’ko’s argument could be used to under-
stand the exact form of infinite knotting in high dimensions. Bob
had the great idea of applying this picture of knotting to the dou-
ble suspension problem. He found that if one looked “sideways
and skeewompus” at the four critical edges of the diamonds mak-
ing up the new space, they looked a lot like an infinitely knotted
set. He could show, he said, that many double suspensions were,
in fact, manifolds.

This was an exciting time. Bob’s result was incredible. He had
spent the previous two years traveling all over the United States
picking up the techniques he needed for this problem. My student
David Wright had shown me some of Bob’s techniques. But there
were difficulties. We had no written version of what he had done.
We had no idea how he proceeded. He was writing some master
work on the thing, but he couldn’t prove the general theorem asso-
ciated with the Milnor double suspension problem. He also couldn’t
handle some of the most common examples. I had understood
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Stan’ko’s work, too, and 1
thought he must use that.
Stan’ko seemed to give such
a clear view of what must be
happening that I believed
Bob could finish the problem
it he could do one example.
Things were becoming clearer
and clearer to me, but I need-
ed one more idea. I avoided
working hard on the prob-
% lem, however, for almost two
. ) years because I was sure that

Bob would finish it off any
day. We finally invited Bob to
visit us at the University of

Alexander Horned Sphere

Wisconsin, and he outlined
his insight for us: in high-dimensional spaces all infinite knotting
could be traced to ghostly approximations of high-dimensional
objects called Alexander Horned Spheres. Bob didn’t actually
find these horned spheres, but he found something enough like
them that he could usually unknot all of the problems.

Bob left, and I thought and thought. I knew what to look for
now. I would never have believed that Bob would find something
so explicit, but when I looked carefully, I found not just ghostly
approximations of these horned spheres, but the horned spheres
themselves. [ was amazed! The construction of these spheres could
be based on a crazy infinite construction. Reach a hand toward the
infinite knotting. As the knotting becomes more tightly bound and
things get too constricted, split the fingers into multiple tiny fin-
gers. When things get even more constricted, split the tiny fingers
into still tinier fingers, ad infinitum. Russ McMillan called the
hands with multiple fingers “the grope.” (Ric Ancel sent a picture
and quotation from Einstein: “How do I work?” asked Einstein.
“I grope”) In the limit—in the end—the fingertips nestle onto the
knotted structure. Thicken the groping hands. The result is a knot-
ted horned sphere. Now it is time for the old exploding point
trick: explode all of the infinitely many fingertips. The knotting
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disappears like magic. Analyze what has happened, and the proof
is finished. The solution sounds easier than it was. I couldn’t
believe how pretty the picture was. I sat for most of a day just star-
ing at the pictures.

The new results led to important new conjectures, incon-
ceivable earlier: Conjecture A—it is possible to decide whether a
space is a manifold by checking a short list of simple conditions.
The truth of the conjecture would require the truth of two further
conjectures that I simply call Conjectures B and C.

I wrote to Bob, telling him the basic additional ideas and the
results and conjectures to which they led. Before I gave my first
public talk on my theorems, Bob managed to prove Conjecture B
using a key idea that he learned from the doctoral thesis of one of
my students, Dan Everett.’! Dan had learned the idea from me, but
only Bob was able to push the argument through. Within a year,
Frank Quinn had proved Conjecture C—incorrectly. In this unsat-
isfactory state, Conjecture C stood for a decade.

Last year, four mathematicians—from Florida, Michigan,
Brazil, and New York—working in two pairs, managed to resolve
Conjecture C.>* Beautiful Conjecture C is false. There are infinitely
many counter examples.

This story has an interesting epilogue which illustrates the
fact that the truth is often more surprising and more beautiful than
we imagined beforehand. (An example is Joseph Smith’s astonish-
ment upon learning through the revelation the beautiful plan of
life recorded in Doctrine and Covenants 76.) The examples found
in the refutation of Conjecture C by Bryant, Ferry, Mio, and Wein-
berger filled more than the need presented by that conjecture. The
beautiful algebra developed by the Princeton School had largely
mirrored, in algebra, the geometric properties of manifolds. But
the algebraic mirror revealed disturbing gaps in the geometric
landscape: where algebra suggested the probable existence of spe-
cial manifolds, those special manifolds occasionally did not, could
not exist. The miracle of the Bryant-Ferry-Mio-Weinberger exam-
ples of nonmanifolds constructed by the local, infinite processes
of the Texas School was that they exactly filled the gaps suggested
by the algebraic mirror constructed by the Princeton School. Perhaps
these new mathematical models of space, whose very existence
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Brazilian Washington Mio with his family. Mio is one of the four mathe-
maticians who determined that Cannon’s Conjecture C has many
counter examples and is therefore false. 1992. Courtesy Washington Mio.

was unsuspected ten years ago, are in fact as natural and as important
as manifolds themselves. At the very least, in a limited way they
fuse more perfectly the geometric and algebraic views of our
world and fuse more perfectly the work performed by mathemati-
cians with disparate views.

Human Parallels, or Parables: Debt and Appreciation

We turn now to people parallels, or parables. The people we
have been discussing have been more to me than mathematicians.
They have also been friendly, kind and compassionate, moral and
exemplary, loyal and fun, and helpful and supportive when our
family was in need. Almost without exception they have had faiths
different from ours. To us they have exemplified the best as
described by the Savior’s parable where people from differing
backgrounds were reconciled in a moment of need:

Who is my neighbor? . . . A certain man went down from Jerusalem
to Jericho, and fell among thieves, which stripped him of his rai-
ment, and wounded him, and departed, leaving him half dead. . . .
A certain priest . . . when he saw him, passed by on the other side.
And likewise a Levite. . . . But a certain Samaritan, . . . when he saw
him, he had compassion on him, And went to him, and bound up his
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wounds. . . . Which now of these three, thinkest thou, was neighbor
unto him? (Luke 10:29-36)

Ardyth and I have lived approximately twenty-five years away from
the centers of the Church. We have during that time incurred a
great debt toward many kind Samaritans. The Brigham Young Uni-
versity community must show the same kindness and appreciation
toward the strangers in our midst that others showed us when we
were strangers. As I talk about mathematicians as people rather
than mathematicians, I pay tribute not only to them, but also to
those who have committed their lives, as people of a variety of
faiths, to our great cause at BYU. I say to them, “We appreciate you.
We need you for the excellence of your knowledge and teachings
and lives. We need you for what you teach us about life and about
ourselves. We need more like you. We know that we do not agree
on all things. But we look forward to the time when we both know
much more than we know now so that we can see eye to eye.”

A number of these mathematicians have taught me by exam-
ple because they and their families have survived tremendously dif-
ficult times with goodness intact. Lipman Bers, George Polya, and
the parents of Ric and Ester Ancel either fled from or survived the
horrors of the Nazi concentrations camps.

One account states that “Lipman Bers in 1934, as a young rad-
ical had to flee his native Latvia following a fascist coup d’etat.
Four years later, having just received his Ph.D. at the University of
Prague, he had to flee again, this time because he was a Jew.”>?
He is well-known in the mathematical community as an advocate
for human rights. Though having suffered the oppression of the
Nazis, Bers studied and admired the work of a rabid Nazi youth
named Otto Teichmuller, who helped hound Jewish mathemati-
cians at Gottingen, wrote wonderful theorems, volunteered for the
Russian Front, and was never heard from again. I have always been
touched by Bers’s appreciative and sensible response to Teich-
muller’s work. Bers quotes Plutarch: “It does not of necessity fol-
low that, if the work delights you with its grace, the one who
wrought it is worthy of your esteem.”**

George Polya was a Hungarian mathematician I mentioned ear-
lier. Famous for his work in Germany during the twenties and thir-
ties, Jewish Polya nevertheless had to flee Germany for America
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during the Nazi regime. As he aged, Polya turned his great talents
to the teaching of teachers. He was greatly beloved. Polya invited
me, as a freshman, to his home, introduced me to his wife, and
showed me his mathematical notebooks written over many years.
He took time to write me a letter of encouragement during my mis-
sion in Austria. He encouraged me to work hard and to do a little
mathematics regularly because, as he said in German, “He who
rests, rusts.”

A number of mathematicians taught me—Dby little things they
did—what I consider important life lessons. When I was just begin-
ning to learn the mathematics that Bill Thurston was studying, Bill
and I found ourselves the lone strangers at an extended mathe-
matics conference in Houston. I hardly knew the basic terminol-
ogy of the subject. Bill suggested a problem. I said that I found the
problem really interesting and that I would go off and think about
it. Bill said, “Oh, no. It would be a lot more fun to think about it
together” And so we did.”

One year, Bob Edwards, my friend who worked on the
Stan’ko problem, told his department chairman, “I haven’t done
very well this year. I don’t think I deserve a raise” How many of us
have that kind of integrity?

Additionally, other mathematicians took us in and cared for us
as a family. R. H. Bing, from the Texas school, hired us at Wiscon-
sin. He took our children for rides on the little train at the park.
He and Mary Bing lent us their home for two weeks when we did-
n’t have a place to stay. R. H. took the children boating in his
speedboat and let them steer, telling them not to mind what their
Mom and Dad said about speeding. He saw that we got fellow-
ships, promotions, and enough money to live on. He attended
Covenant Presbyterian Church regularly but even then couldn’t
leave mathematics alone. His daughter, Gay, reported seeing him
reach up to write on an imaginary blackboard during the sermon.
Later he reached up and erased what he had written.

Ed Burgess was raised in rural Texas and studied topology
with R. L. Moore at the University of Texas at Austin. Ed Burgess
was my doctoral advisor. He took care of his students. When he
decided that I was worth taking a chance on as a sophomore at the
University of Utah, he went out and scrounged up a graduate
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fellowship for me. The dean called me in and explained that, like
student athletes, I had no legal obligation to stay at the University
of Utah, but that I was morally obligated to pay the fellowship back
if I went to another university for graduate school. Ardyth and I
used those fellowship moneys to get married after five years of
writing letters to each other.

Mary Ellen Rudin®® was the first person to visit the hospital
after our child was born with Down’s Syndrome. Having raised
such a child herself, she wanted to encourage us. When the child
died a year later, she mourned with us.

Further, some mathematicians, dead long before any of us
were born, taught me when I was still a high-school student about
values and about truth. For example, Karl Friedrich Gauss noted:

There are problems to whose solution I would attach an infinitely
greater importance than to those of mathematics, for example touch-
ing ethics, or our relation to God, or concerning our destiny and our

future; but their solution lies wholly beyond us and completely out-
side the province of science.’’

My favorite quotation from Henri Poincaré rivals even my
favorite from the Book of Mormon, which says, “And if ye will lay
hold upon every good thing, and condemn it not, ye certainly will
be a child of Christ” (Moro. 7:19). Poincaré talks about truth, its
beauty, the reason we love it, the reason we fear it, and its essential
unity. We tend to separate sacred and secular truth in a way that I
have never been able to understand; I have always believed there is
only one truth. Poincaré explains how the two truths, if there are
indeed two, cannot be separated. Here is the quotation:

Truth should not be feared, for it alone is beautiful. When I speak
here of truth, assuredly I refer first to scientific truth: but I also mean
moral truth. I cannot separate them, and whosoever loves the one
cannot help loving the other. These two sorts of truth when discov-
ered give the same joy; each when perceived beams with the same
splendor, so that we must see it or close our eyes. In a word, I liken
the two truths, because the same reasons make us love them and
because the same reasons make us fear them.”®

Since my childhood, kind Samaritans have cared for my
family. The following story is typical of our experiences living in
many different neighborhoods. In 1947, I was four years old, the
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youngest of three small children living with Mother and Father in
Bowling Green, Ohio. We were the only Mormon family in town.
My father traveled with H. J. Heinz to South Africa on an extended
trip to look into the prospects for building a new food-processing
plant there. My mother was expecting a fourth child. While my
father was gone, my mother suffered a miscarriage. She lost so
much blood that the doctor abandoned her to what he termed
inevitable death while he cared for accident victims who had just
arrived at the hospital. Although Mother did not die, she was very
ill for a long time before father returned home. Our neighbors saw
to it that Mother was nursed and we children were fed and cared
for in every way. We remember those people, Grace Schulz, Ruth
Putnam, and others, with great love.

These stories are my own parables because they have taught
me, like the parable of the Good Samaritan, that differences do not
have to engender fear. Unfortunately, we occasionally have a large
streak of fear towards those who are different, toward those who
disagree with us—fear that they will corrupt us or cost us our
uniqueness. We fear that secular truth will destroy moral truth. But
how are we to serve the world if we are afraid of the world, if we
are driven by fears that those we disagree with will destroy what
is unique about us? I think that we can be unique in the best pos-
sible way only if we abandon fear and concentrate on exercising
the highest standards in our personal actions and thought.

Here is my personal academic creed:

I will act with courage and not from fear—fear of what others
may expect or think, fear of my own inadequacies.

I will speak freely, openly, publicly. I will remember that our
knowledge of truth, even revealed truth, proceeds by approxima-
tion according to our ability and experience and that difficult issues
can be understood and resolved best in an atmosphere where the
evidence—physical, spiritual, or intellectual—can be freely and
openly discussed.

I will learn from those who do not agree with me. In particu-
lar, I will not impute bad motives to those who do not agree with
me. [ will instead examine their evidence, their arguments, and their
conclusions and weigh each thoughtfully and carefully. I will remem-
ber that bad feelings arise when evidence is ignored and people are
treated with disrespect and that, since the experiences of individu-
als vary widely, differences in point of view, even momentarily awk-
ward ones, need to be welcomed, understood, and appreciated.
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I will not fear being wrong, for which of us has not been
wrong? I will instead fear being dishonest in what I understand or
being unwilling to change as my understanding grows. I will fear
using shoddy arguments, presenting weak evidence, and ignoring
good evidence and hiding behind cleverness with words or behind
the incorrect use of authority. I will not demand that others accept
my evidence and arguments but will have faith that good evidence
and valid arguments will in the long run prevail.

I will not be embarrassed by those who do what I think is
wrong, for they are responsible for their own actions. I will instead try
to see the issues clearly and react to the issues directly and honestly.

[ will not presume that because I have authority over another
(whether an employee, child, or student) that I can demand their
loyalty. I will remember that loyalty can be earned but not bought
or compelled. I will remember that in academics, as in all of life,
any true influence arises not from position, but from good and hon-
est work—persuasion, love, and long-suffering. Influence is not
something bestowed by a university or anyone else but comes,
when it does, from the good work of the faculty, students, alumni,
staff, and administration.

Postscript 1995: Perhaps this creed, my own attempt to
implement the principles of Christ’s parables, can serve as an ap-
proach to the treatment of differences among people. Ardyth and
I took at least ten years of married life to learn to handle our dif-
ferences compassionately and gracefully. I am now trying to learn
to handle my differences with people in the larger world.

This talk is, of course, both mathematically and nonmathemat-
ically, about the perennial problem of dealing with differences
among people. This fundamental and difficult problem is the real
subject of the Savior’s parable of the good Samaritan. The parable
derives its special strength or bite from the fact not that the Samari-
tan was a good man, but that the good man was a Samaritan, an out-
sider, a despised and feared person, a stranger, religiously incorrect.

This speech was written in 1993 as we watched BYU strug-
gle with the problem of differences in a self-conscious way. The
public dialogue exhibited at least three emotional tendencies,
sometimes explicitly, sometimes only implicitly, whose merits, in
the best tradition of the great university, deserve to be publicly
examined. The first tendency was to fear the strangers of other
faiths in our midst as a potential threat to our uniqueness as a
church-run university. The second tendency was to assume that all
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LDS scholars in our midst, sharing as they do a common label, did,
or at least should, share all of the same views. The third tendency,
on both sides, was to evaluate difference of view as willful malice.
This talk was my attempt to enter the public dialogue in the most
gentle and constructive manner I could muster.

The key to overcoming tendency one, fear of strangers, is
and always has been one of inversion: imagine ourselves as that
stranger in the midst. Because I lived and worked among people of
other faiths for many years, this inversion was, for me, an easy mat-
ter; the value to me of the stranger’s views was a tested and con-
firmed reality.

Tendency two, judging people by their labels, is a conse-
quence of one’s retreat from reasoned dialogue—from replacing
reason with sloganeering, labeling, and packaging. We Mormons
have differences among ourselves, and we will be in reality
strangers to each other until we learn to recognize and treat our
differences lovingly and respectfully. The fact that any people
share common labels, such as “Mormon” or “Intellectual” or “Con-
servative” or “Feminist,” does not confer upon them a well-defined,
common background, experience, knowledge, or views.

Tendency three, the distrust of disagreement, leads to one of
the great traps of our public world, the curtailment of public dia-
logue. Any truly important issue has many aspects and is deserving
of open, respectful, and passionate discussion in an atmosphere
free of fear. We could do much better in this regard. Essayist
Wendell Berry warns of the possibility of forming not only an ex-
treme right and left, but also an extreme middle which “looks
upon all critics as traitors,” which “equates the government with
the country, loyalty to the government with patriotism.”>®

In remembering the lesson of Jesus’s great parable, we have
the opportunity of avoiding the traps of the extreme middle,
loaded labels, and fear of the other. My hope is that we can add the
unique qualities of faith and inspiration to the strengths of other
great universities without throwing away other qualities as profound.

J. W. Cannon is Professor of Mathematics at Brigham Young University. This
paper, illustrated with more than a hundred slides, was originally presented as
the Distinguished Faculty Lecture at Brigham Young University on February 24,
1993. The current text is slightly revised from the original.
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