Statistical Distributions:
How Deviant Can They Be?

James B. McDonald

There are many jokes told about economists and statisticians. A
neighbor took great delight in telling me that he had heard that an
economist 1S someone who wanted to be an accountant but didn’t have
enough personality. You may have heard about the statistician who
drowned in a river that only averaged six inches deep.

In spite of the feelings these expressions reflect for these two
disciplines, the use of statistics provides an important common denomi-
nator for much of the applied research being done in the natural and social
sciences. This 1s true in the fields of physics, astronomy, biology,
economics, engineering, finance, marketing, and many more. Statistics
often refers to both the collection of empirical data and the use of this data
to estimate relationships, determine trends, and make inferences. It 1s the
analysis of data, however, rather than the collection of data that charac-
terizes modern statistics.

Given the extensive data sources currently available and existing
computer hardware and software, the use of statistical models to describe
the extent of our uncertainty about a variable and relationships between
variables is a particularly exciting and productive area of research. I will
focus on one facet of my research which I hope will be of rather general
interest. First, I will review some history associated with the develop-
ment of statistics and probability from being purely descriptive to
providing models for the analysis of data. Second, I will discuss a few of
the statistical models known as distributions that have played an impor-
tant role in the development of modern statistics. Major scientific
problems have provided the basis for the development of several of these.
Next, I will discuss some relatively new distributions that include most
of the previous ones as special cases and also provide for important
increased flexibility. Finally, I will consider some applications of these
models 1in economics, engineering, and finance.
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University, 28 January 1987. The author expresses appreciation to Steve White and Dave Williams for their able
research assistance and to Steve for preparing many of the figures used in the presentation; to Earl Faulkner for
providing references to some excellent material on the history of statistics; to Jay Irvine who provided data on
starting salaries for graduates; to Richard Butler, Kaye Hanson, and Steve White for their comments on earlier
versions of the paper; and to his parents, Leonard and Arola McDonald, and his wife, Kathy McDonald, for their
assistance and encouragement.



’4 BYU Studies

THE HISTORY OF PROBABILITY AND STATISTICS

Attempts to determine the beginning of any intellectual discipline
are highly speculative. Many researchers suggest that before 1650
statistics primarily involved the description of events rather than
reasoning from the data in order to make inferences about cause and
effect.’ Probability theory is no different. There 1s evidence of games of
chance being played long before the seventeenth century. Many archaeo-
logical finds contain abnormally large deposits of small ankle bones. It
1s thought that these bones were used in various games. These bones
appear in paintings on Egyptian tombs as pieces used in games of chance
and are still used in some children’s games in France and Greece.”
Gambling or gaming was so popular with the Romans that laws were
passed which torbade it except during particular seasons. The emperor
Claudius was so interested in “dicing” that he wrote a book about it and
played while riding in his carriage. It is reported that he would throw dice
onto a special board that had been fitted in his carriage. One source
reports that he even played his left hand against his right hand.’

There appears to have been little or no formal discussion about the
odds or probabilities associated with games of chance prior to the mid to
late seventeenth century.® The sample mean or average is very important
in statistics and probability and yet i1sn’t even mentioned before the
eighteenth century.’

Why was the theory of probability and statistics so late in being
developed? One explanation is that the dice or instruments used in
gambling were so irregular 1n shape that i1t may have been ditficult to
recognize a consistent pattern from one set to another. The faces of the
dice were often neither square nor parallel. F. N. David obtained three
dice from the British Museum. One was made out of rock crystal, another
from 1ron, and the third from marble. The three dice were each tossed 204
times, and the number of times that each of the six faces appeared was
recorded.” These results are shown in table 1.

TABLE 1
Dice: Result of 204 Tosses
VALUE OF TOSS
MATERIAL 1 2 3 4 5 6
Rock Crystal 30 38 31 34 34 37
Iron 35 39 30 21 37 42
Marble 27 28 23 47 25 54
Expected Number 34 34 34 34 34 34

Looking at the last row in table 1, we see that the expected frequencies
associated with tossing a “fair die” 204 times would be for each side to
appear thirty-four times. It should be apparent from the other rows that
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there are obvious discrepancies between the observed and expected
frequencies. Those differences are statistically significant for the marble
die.

Another explanation for the relatively late development of a theory
of probability and statistics is that until relatively recent times events in
the world were viewed as being random or predetermined. The Greeks
and Romans viewed the world as being partly determined by chance,
with the gods and goddesses having some control over the outcome of
events. A contrasting view 1s often attributed to early Christianity before
the Reformation. The notion of a deterministic world without random-
ness or chance appears to have been quite common.’ Both of these views
of the occurrence of events in the world would discourage the careful
analysis of random events that is at the very core of modern statistics.®

[t 1s interesting to note that the Bible, Book of Mormon, and
Doctrine and Covenants contain references to the use of drawing lots as
a method of making decisions as well as providing a way for the
expression of God’s will. The Jewish Talmud also includes many
references to the use of lots. One of the more interesting 1s the description
of the division of Isracl among the twelve tribes. As reported by Hasofer,
the procedure was as follows: Eleazar wore the Urim and Thummim,
while Joshua and all of Israel stood before him. An urn containing the
names of the twelve tribes, and an urn containing descriptions of the
boundaries were placed before him. Animated by the Holy Spirit, he
announced the name of a tribe and the name of a territory. Then he shook
the urns and drew out the name of the tribe from one and the territorial
description from the other. This procedure was repeated for each of the
tribes. It 1s interesting that the results of the drawing were reported to
have been announced prior to the drawing and that at least one source
reports that the drawings from the two urns involved two priests. These
claborate preparations were to emphasize that the results were the
outcome of divine will.’

Two other excellent references to the history and development of
probability would be the books by Hacking and Maistrov. "

WHERE DO OUR MODERN STATISTICAL MODELS COME
FROM AND HOW ARE THEY USED?

The development of formal statistical models began in the late
seventeenth century. Some of the early developments were motivated by
problems in astronomy and physics. The participants in this development
represented many disciplines, and a list of the contributors reads like a
Who's Who in the World of Science, including Euler, Edgeworth,
Demoivre, Galton, Gauss, Laplace, Legendre, and Maxwell, among
others. These contributions arose out of an attempt to build models that
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would more accurately describe some phenomenon and use the available
data more efficiently to make decisions in the face of uncertainty. The
notion of probability or distribution functions provides the theoretical
bedrock or foundation for these ettorts.

The distribution or density function is used to visually depict the
relative frequency, likelihood, or probability that an event will occur.
Some important concepts are humorously depicted in figure 1, drawn by
Ron Bell. In this figure, those above 90 percent receive A’s, those
between 80 and 90 percent receive B’s, and so on. The corresponding
areas under the curve indicate the fraction of students receiving the
various grades. This particular distribution is symmetric with both tails
having the same shape and thickness.

The shape and location of these distribution functions 1s very
important in statistics. For example, in 1986 the average starting salary
was almost $28,000 for a student with a bachelor’s degree in engineering
and $16,000 for those graduating with a bachelor’s in social and
recreation work. Figure 2 visually illustrates that not everyone received
the same salary; however, there 1s a $12,000 difference between the
average starting salaries for the two majors. If Steve Young had majored
in recreation work and graduated 1n a class of fifty, the average salary for
that major would be approximately $36,000, as indicated in figure 3. If
the graduating class was smaller and only included eight students, then
the average starting salary would be approximately $136,000 per year.
Figure 4 illustrates a distribution with a thick tail to the right and 1s said
to be skewed to the right. Starting salaries for MBA’s exhibit this same
behavior, with a few students offered in excess of $70,000 per year.

Figure 4 provides a different example. The grade inflation issue at
BYU can be viewed as a distribution that has a thick tail to the left and
is said to be skewed to the left. This can be due either to professors who
are too lenient or to a relatively large group of excellent students.

The shape of the distribution, whether it is skewed or not, and the
thickness of the tails have very important consequences when we attempt
to model uncertainty. For example, many students seem to feel that their
entire futures depend upon the shape of the curve used in determining
final grades. The thickness of the tail indicates the probability of large
deviations from the mean. One can imagine that this would not only be
of interest to students, but to a portfolio manager who 1s interested in
large returns (right tail) butis also concerned about the likelihood of large
losses (left tail).

Important statistical distributions developed before the twentieth
century include the uniform, binomial, normal, beta, double exponential
or Laplace, chi-square, lognormal, Student’s t, and Pearson’s skew
distributions. I will not be exhaustive in my coverage of these distribu-
tions. However, some fascinating stories are behind the development of
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some of these models. I will briefly trace the evolution of a few statistical
distributions and focus on their shapes. I will not address normative
issues associated with the shapes of the distributions that arise in various
applications.

FIGURE 5
Uniform
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One of the first statistical distributions to be observed and mathe-
matically modeled is the uniform distribution shown 1n figure 5. This
distribution appeared as an estimate of an empirical law 1in some of
Halley’s data on human mortality." DeMoivre formalized the distn-
bution in his treatise on life annuities.'” The model suggests equally
likely outcomes of an event over a finite interval, and the average or
expected value of the event is at the midpoint of the interval.

The famous bell shaped curve, the normal probability distribution
with various possible shapes, is shown in figure 6. Distributions with
different means () and variances (o ) are shown. In 1733, DeMoivre
first obtained the normal distribution as an approximation to binomial
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distribution. "’ Only later was it found to provide an excellent fit to many
types of data.' This density was often called “the law of frequency of
error’ and is one of the most commonly used distributions in statistics—
the workhorse of statistics. The mean or average value of a normally
distributed variable corresponds to the highest point on the curve, and it
1s important to note that the distribution is symmetric about the mean.

FIGURE 6
Normal
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It 1s difficult to assess the impact the normal distribution has had on
theoretical and applied statistics. However, the potential of the normal
distribution was recognized early. In 1889 Francis Galton wrote in his
famous book Natural Inheritance: 1 have known of scarcely anything
SO apt to impress the imagination as the wonderful form of cosmic order
expressed by the Law of Frequency of Error (normal). ... The Law would
have been personified by the Greeks and deified, if they had known of
it.”’"> Historically, the development of the normal distribution or theory
of errors was particularly associated with astronomy, but it is now widely
used in many disciplines.'
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However, the normal has two important shortcomings: many data
are not symmetrically distributed, and some distributions have a higher
frequency of outliers or thicker tails than permitted by the normal. In fact
it seems that skewed distributions are often the rule rather than the
exception for many economic data. Two distributions that permit thicker
tails than the normal are the Laplace and Student’s t distributions.

FIGURE 7
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In 1774, Laplace derived the double exponential or Laplace distri-
bution. From figure 7 we see that the Laplace distribution, like the
normal, 1s symmetric about the mean but is more peaked near the mean
and has thicker tails. Both of the distributions in figure 7 have the same
variance. An interesting personal note about Laplace 1s that he was one
of Napoleon Bonaparte’s instructors and had interesting public and
scientific careers. He served as minister of the interior in 1799, and later
as amember of the French Senate. Laplace was a productive scholar until
his death at the age of seventy-eight and has been referred to as France’s
most illustrious scientist of the eighteenth century. He was eulogized by
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Poisson as “the Newton of France.”'” One biography suggested that if

“publish or perish” were literally true, Laplace would be alive today.
The problem of thick tailed data led to the development of another

statistical model that came from the Guinness Brewery 1n Ireland.

FIGURE 8
Student's t
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The t distribution 1s another distribution that 1s symmetric but permits
thicker tails than the normal. The smaller the degrees of freedom, the
thicker the tails. The normal distribution 1s a limiting case of the t
distribution for large degrees of freedom. This distribution was derived
by William Gosset. Gosset (1876—1937) graduated from Oxford in
chemistry and mathematics, and was hired by the Guinness Brewery to
study the production of beer and to investigate the relationship between
the quality of the brew and the conditions of production. The normal
distribution did not have thick enough tails to provide an accurate
description. Gosset derived the famous t distribution and published his
findings anonymously under the name “Student™ in 1908. Since he didn’t



Statistical Distributions 05

use his real name, he must not have been worried about tenure or
promotion at the brewery. Gosset worked at the brewery until three years
before his death, and his most important contributions in statistics were
motivated by a desire to solve problems encountered at the brewery.

While these distributions helped with the problem of thick tails,
neither provided a model for the positively skewed distributions that are
so common in empirical work. The lognormal is a very important
distribution for data that are skewed to the right.

FIGURE9
Lognormal
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In 1879, Francis Galton presented a paper before the Royal Statis-
tical Society in which he stated: “My purpose i1s to show that an
assumption which lies at the basis of the well-known law of Frequency
of Error [the normal] is incorrect in many groups of vital and social
phenomena.”'® He then proposed the lognormal distribution for such
data. If data are distributed as the lognormal distribution, then the
natural logarithms of the data will be normally distributed. This
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distribution is positively skewed with a long tail to the right and has been
used extensively to model the distribution of income, particle size in
engineering, and also in medicine. The lognormal can approximate the
normal in some instances, but 1t cannot model negatively skewed data
and often does not have thick enough tails.

In spite of the problems of asymmetric and thick-tailed data,
the normal was often used rather uncritically until the early 1900s.
Karl Pearson, among others, was very concerned about the shortcomings
of the normal distribution and derived a system of distribution functions
that permitted much greater flexibility than the normal. Pearson recorded
in 1895 that Edgeworth had come to him about two years earlier with
some skew price curves and asked if he could discover any way of
handling skewness. Pearson reports: “I went to him in about a fortnight
and said I think I have got a solution out, here is the equation, and told
him my chief discoveries. I further said I don’t intend to publish till T have
illustrated every point from practical statistics.” " This system of distri-
bution functions 1s still important today and includes the t-distribution,
gamma, beta, and others as special cases.

In summary, the question of whether the normal fits the data well
1s important in many applications. There have been many attempts to
address questions about normality, skewness, or symmetry, and the
width of tails as measured by what 1s referred to as “‘kurtosis.” The
Laplace and t distributions provide some additional flexibility for the
problem of the tails. The lognormal and Pearson skew distributions
provide an approach for the skewness problem. Issues surrounding these
developments have evolved over more than two hundred years and find
roots in many disciplines.

The computational aspects of statistical analysis have been a major
obstacle until fairly recent times. As an example of the time-consuming
nature of complex calculations, the research for Karl Pearson’s book
Tables of the Incomplete Beta Function was begun in 1922, and the book
was not published until ten years later in 1932. The dramatic changes in
our ability to do complicated calculations that have occurred in recent
years were unanticipated by many. For example, Charles H. Duell, of the
U.S. Patent Office, is reported to have suggested in 1899 that “everything
that can be invented has been invented” and even discussed closing the
patent office. Thomas J. Watson, chairman of the board of IBM, declared
in 1943, “I think there is a world market for about five computers.”
Popular Mechanics reported in March 1947: “Where a calculator on the
ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tons,
computers in the future may have only 1000 tubes and perhaps weigh
only 1.5 tons.”™

Today, a twenty pound portable computer has greater capacity than
many of the large early computers that had to be kept in air-conditioned
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environments because of the heat generated by the thousands of vacuum
tubes and the sensitivity of the circuits to the physical environment.
These recent developments in computer hardware and software have
facilitated rapid progress in disciplines that are dependent upon
numerous or complicated computations. Many new statistical models
have been developed. The estimation and analysis of many of these
models is often very complicated or impossible without the use of the
computer. We now turn to some of these new distributions.

NEW DISTRIBUTION FUNCTIONS

Some of my recent research has dealt with very flexible distribution
functions. If the wrong distribution function 1s selected, one can obtain
very peculiar results. For example, if a normal distribution 1s fitted to
highly skewed empirical data, important results can be in error and
misleading.

The new distributions will be referred to as generalized beta of the
first type (GB1), generalized beta of the second type (GB2) and gener-
alized t (GT) distributions. The formulas for the distributions are given
in table 2.

TABLE 2
Generalized Distributions
MODEL DENSITY FUNCTION
GB1 ay*!(1-(y/b)*)¥’ O<y<b
b*B(p.q)
GB2 &yﬂp'] [:,'I{y-::'_m
b*B(p.q)(1+(y/b)*)>*€
GT p ~eo<y<oo

2Bg"*B(1/p,q)(1+(lyl/B)r)+t»

These distributions are relatively “friendly” equations as compared to
many equations in mathematics and statistics.

The GB2 or generalized beta of the second type has been
considered before by Mathai and Saxena (1966) and Prentice (1975).
However, this distribution was not widely known at that time, was
independently obtained by several researchers in the early 1980s, and has
received considerable attention during the last couple of years. The first
applications of the GB2 to empirical data were done at BYU. The GB1
and GT do not appear in the literature and were developed at BYU
and also have important applications in a number of different disci-
plines.”! The shapes of these distributions are extremely flexible and
address many of the criticisms of the normal—in particular the issues of
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symmetry and thickness of the tails. For example, the GB2 includes four
parameters (a, b, p, and q), and changes in these can accommodate four
different types of movement of the distribution. These movements and
flexibility are depicted in the following figures. Increasing the parameter

“a” makes the distribution more peaked.

FIGURE 10
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Increasing the parameter “b” shifts the distribution to the right.

FIGURE 11
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Increasing the parameter “p” tends to make the right tail thicker and the
distribution more skewed to the right.

FIGURE 12
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Increasing the value of “q” makes the left tail thicker and the distribution
more skewed to the left.

FIGURE 13
GB2 When q Increases
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In order to fit a distribution to a set of data, we use the computer to
adjust the values of a, b, p and q and move the graph of the distribution
until it fits the empirical data well. Adjustments of this kind would not
have been feasible until recently, but computer programs have been
developed to perform this estimation.
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Figure 14 illustrates the flexibility of the general distributions in a
different way. In this figure, each square or box corresponds to a
different distribution. The connecting lines indicate special cases. The
GB1, GB2, and GT can be seen to include many distributions as special
cases. The GB1 and GB2 include the normal (N), lognormal (LN),
gamma (GA), and Weibull (W) as special cases. The generalized t (GT)
includes the Laplace, normal, t, and others as special cases. When 1
presented this material at a seminar at Princeton, someone asked if my
Mormon background had motivated me to represent the relationships in
the form of a genealogy tree.

The three general distributions include almost all of those used
before as special cases and are extremely flexible in shape. By using the
flexible or general distributions in empirical work, we can avoid
imposing unrealistic assumptions associated with some of the special
cases. The more general distributions will also fit any data set at least as
well as any of the special cases. In the applications to be considered in the
next section, I will focus on the GB2, but each of these three general
distributions has important applications.

Before turning to the applications in the next section, I will briefly
indicate how the generalized t can be used 1n regression analysis or
curve fitting. Figure 15 depicts a common statistical problem that was
involved 1n the solution of three important scientific problems in the
eighteenth century: obtaining a mathematical model of the motion of the
moon; determining the shape of the earth; and explaining the accelera-
tion and deceleration of Saturn and Jupiter. With each of these problems,
data were available that did not exactly conform to what was implied by
the underlying models. The question can be visualized as trying to best
fit a straight line to a set of data that do not lie on a straight line. One
approach 1s to delete problem data points, as in figure 15, but even
then the remaining data points will not lie on a straight line. Euler (1749)
did not employ any statistical techniques. He simply noted that there was
not an exact solution and moved on to consider different problems.
Boscovich (1755, 1775) and Laplace (1785) proposed fitting a line that
minimized the sum of absolute values of the vertical distances
between the line and the observations. This procedure 1s based upon the
Laplace distribution. Legendre (1805) proposed selecting the line that
minimized the sum of squares of the vertical distances. This method is
known today as least squares. Gauss (1809, 1823) proposed the same
procedure and showed that this method 1s based upon the normal. The
literature contains a rather lengthy and heated exchange between
Gauss and Legendre as to who first discovered the method of least
squares. Since the generalized t includes both the normal and Laplace
distributions, it provides a generalization of both of these methods of
estimation.*
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APPLICATIONS

We will now consider three applications of the GB2: the distribu-
tion of family income, the distribution of coal particle size in coal
combustion, and the distribution of stock prices. In each of these
applications, we are not only interested in the mean or average value
but also in the dispersion or variance, the skewness and thickness of the
tails.

Income Distribution

Some of my early research involving statistical distributions was
prompted by an interest in the distribution of income. Issues surrounding
the distribution of income have attracted a great deal of attention from
many economists and politicians, particularly since World War I1. This
is evidenced by considerable discussion of the impact of existing and
potential economic policies upon various income classes. In order to
provide answers to some of these questions, it is important to be able to
quantify measures of income inequality in a useful manner and to
investigate the relationship between these measures and important
underlying macroeconomic and policy variables. It 1s also important to
note that the distribution of income can have an impact upon the
performance of the economy.

Many studies have considered these and related questions. These
studies have often been based upon distributions that did not provide a
good fit to the data or that used measures not sensitive to underlying
changes in the distribution. For example, the data usually utilized in such
studies are in a grouped format such as the distribution for family income
for 1980 shown in figure 16. This 1s in the form of a bar graph with the
areas of each “bar” representing the fraction of families in each income
interval.
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If a lognormal distribution is used, we obtain the fitted curve in
figure 17. The lognormal fits some areas quite well, but not others. Note,
for example, that the lognormal 1s too peaked near the center of the
distribution.

FIGURE 17
1980 Income and Lognormal

0.040 =

0.032

0.024

0.008
.

’r
l

0.000 —
0.0 50.0 100.0



108 BYU Studies

Richard Butler and I used the more general GB2 to fit family
income data for the thirty-three-year period from 1948 to 1980.> The
results in figure 18 demonstrate that the GB2 is much more flexible and
provides a significantly better fit than the lognormal.

FIGURE 18
1980 Income, Lognormal, and GB2
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Given these fitted distributions, measures of inequality and other
characteristics can be easily investigated. In figure 19, for example, the
shaded area on the left represents the fraction of families with incomes
less than $12,300 in 1980. The shaded area on the right denotes the
fraction of families with incomes greater than $50,000 in 1980.

FIGURE 19
1980 Income Distribution using GB2
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Since we are looking at incomes for more than thirty years, it is important
to adjust for inflation in order to represent real purchasing power. All
incomes will be converted to 1967 dollars. These adjustments for 1980
are represented at the bottom of figure 20. Thus $5000 in 1967 has
approximately the same purchasing power as $12,300 in 1980, and
$20,000 in 1967 is equivalent to approximately $50,000 in 1980.

We now consider how these distributions have moved over the
thirty-three-year period from 1948 to 1980. We consider all families,
white families, and black families.

FIGURE 20
All Families' Income
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Figure 20 reports income characteristics for all families over this
time period. The Gini coefficient is a measure of overall inequality. The
small changes in this measure of inequality mask much larger changes in
some other measures of economic well-being. For example, the fraction
of the population with incomes less than $5,000 (1967 dollars) has
steadily decreased from 60 percent in 1948 to less than 30 percent in the
late 1970s. Remember that these figures have been adjusted for inflation
and represent real purchasing power. The fraction of the population with
incomes less than $20,000 (1967 dollars) has declined slightly from
99 percent to 95 percent in 1980. The area between the $5,000 and
$20,000 lines represents a broad measure of the middle class. We see that
the middle class with incomes between $5,000 and $20,000 has
increased from 38 percent to 66 percent for this period.
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[t is interesting to compare the distribution of family incomes for
blacks and whites.

 FIGURE 21
Black Families' Income
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Figure 21 reports similar information for black families. We see
that overall income inequality decreases slightly during the mid to late
1960s and then increases gradually. The Equal Employment Oppor-
tunity and Affirmative Action programs began in the mid 1960s. The
fraction of black families with incomes less than $5,000 (1967 dollars)
has decreased dramatically over this period from 85 percent to 45 percent
in 1980. Thus 55 percent of black families had incomes above the $5,000
level by 1980.
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FIGURE 22
White Families' Income
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Income inequality for white families has been relatively constant
over this time period. Again, there are changes in the distribution that this
statistic does not reflect. White families with incomes less than $5,000
(1967 dollars) decreased from 55 percent to 22 percent, and those with
incomes greater than 20,000 (1967 dollars) increased from about
1 percent to 8 percent. Thus by 1980, 78 percent of white families had
incomes greater than 5,000 (1967 dollars), compared with 55 percent of
black families.

It should be apparent that there have been considerable movements
of the distributions of income for blacks and whites over time, and both
groups are better off. But how have these two distributions moved
relative to each other?
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FIGURE 23
Distance between Black and White Distributions
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Figure 23 depicts a measure of the distance between the income
distribution for white and black families. We observe that there are large
reductions in the distance between the two distributions. This represents
very large changes in the economic well-being of black families relative
to white families over the entire time period. These changes predate the
social legislation of the 1960s and continue through the 1970s. What
factors seem to be associated with these movements?

(1)  Economic growth is an important factor and is associated with
increased equality for blacks and whites. This appears to result from
increasing the fraction of families with incomes greater than $5,000
(1967 dollars) more than it increases the fraction of families with
incomes greater than $20,000 (1967 dollars). In other words, growth
appears to be associated with everyone being better off, butrelatively
speaking the lower income families are helped the most.

(2)  On the other hand, Inflation tends to increase income inequality.
Inflation decreases real income or purchasing power—especially for
those with relatively fixed incomes. Inflation was seen to increase the
fraction of families with incomes less than $5,000 (1967 dollars).

(3)  Government expenditure, transfer payments, and equal employment
opportunity legislation appeared to have little impact on the distribu-
tion of income for whites, but it did help shift blacks above the $5,000
level.

In summary, we have found important changes in the distribution
of income over time with a narrowing of the disparity between the
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income distributions for black and white families. Inflation and
economic growth have an impact on the distribution of income. Govern-
ment programs have been helpful in improving the economic well-being
of blacks.

Distribution of Coal Particle Size

Distributions of the size of coal particles are important in coal
combustion. I worked with Dale Richards, Philip Smith, and Bill Sowa
in analyzing the distribution of sizes of pulverized coal.” This is related
to a multi-million dollar research grant received by the Advanced
Combustion Research Center at BYU. This project is directed by
L. Douglas Smoot, who 1s investigating ways to make coal burn more
efficiently. Pulverized coal has been used as a fuel for commercial
combustion since the late 1800s and currently accounts for a major
portion of the power generated by electric utilities. Pulverized coal
combustion requires grinding coal into very small sizes and then mixing
it with steam or oxygen in a combustion chamber. The mixture is burned,
creating steam that generates electricity. The distribution of particle size
is important to the efficiency and operation of the furnace. Small particle
sizes are important to insure rapid ignition, and some larger particle sizes
are needed to obtain maximum combustion efficiency. The Combustion
Research Center has built computer simulation models (thirty thousand
lines of Fortran code, fifteen CPU hours/case) to determine the relation-
ship between the distribution of the size of coal particles, other inputs,
and the electricity generated and related pollution.

The distribution of coal particle size is used in these computer
simulation models. An accurate model of the distribution of particle size
1s needed. The lognormal has been one of the most widely used models
to date. Since coal particle size distributions can have many possible
shapes, the additional flexibility of the GB2 may be very useful over a
wide range of conditions. In figures 24 and 25 we see two examples. In
figure 24 the LN and the GB2 both provide a good fit. In figure 25 the
GB2 provides a much better fit than the lognormal. The GB2 will always
do at least as well as any of its special cases.



FIGURE 24
Combustion Coal (Wyoming) - HIST - GB2 - LN
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FIGURE 25
Gasification Coal (Utah) - HIST - GB2 - LN
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The results of this study suggest that the distribution does matter.
Furthermore, it may be possible using this methodology to help deter-
mine optimum particle distributions.

Distribution of Stock Prices and Returns

The last application deals the distribution of stock prices. The form
of the distribution of returns on securities and portfolios is important for
several reasons. The distribution of returns or profits or losses on a
security determines the expected or average return as well as reflecting
the risk in the investment. The probabilities of large deviations from the
mean may be much different for one security than for another. These
factors are of major interest and concern to brokerage firms and those
with investment responsibilities. The world of finance has simul-
taneously become more complicated and exciting with the introduction
of new financial instruments. Options are commonplace, as are terms
such as puts and calls, hedges and stop-loss orders, and options on stock
market indices. An investorin this new environment is still faced with the
assessment of unknown probabilities about the likelihood of the future
price of a security or other financial instrument increasing or decreasing
by a certain amount. The famous Black-Scholes option pricing formula
is an example of an effort to assess these probabilities. In order to do so,
it is important to be able-to accurately describe the shape of the
distribution of prices or returns.

Price changes are often assumed to be distributed as a normal or
lognormal.” A number of studies have shown that daily stock returns
have distributions that are more peaked than the normal or lognormal and
also assign higher probabilities of large returns or losses than the
normal.”® In other words, the tails of the normal or lognormal are not
thick enough. Studies of monthly returns suggest distributions that are
slightly skewed to the right. I am currently investigating these distribu-
tions in more detail and considering some related issues with Richard
Bookstaber and Ray Nelson.

In studying the distribution of daily returns, the GB2 provides a
much better fit than the lognormal in almost all of the cases considered.
Figure 26 shows the distribution of daily returns for five hundred
observations on the stock Compugraphic. The returns are calculated by
dividing today’s price by yesterday’s price and will equal one if there is
no change in the price. The returns are roughly centered around one,
which means that on average the price changes are approximately zero.
However, there are some large increases and decreases over the time
period, as is reflected in the variation of the distribution, sometimes
exceeding 15 percent in one day. The empirical data are seen to have a
distribution that 1s more peaked near the mean and has thicker tails than
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the lognormal. Recall that the lognormal is too peaked for the income
data. The GB2 fits the data remarkably well throughout the entire range.”

FIGURE 26
Stock Returns with Lognormal and GB2
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We are also analyzing the distribution of seven years’ of monthly
data on approximately one thousand stocks listed on the New Y ork Stock
Exchange (CRSP tapes). The mean, variance, skewness, and a measure
of thickness of the tails have been calculated for each of the stocks. Figure
2’7 contains a summary of these calculations.

FIGURE 27
Stock Returns: 1,000 Stocks
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The columns allow for positive or negative skewness as well as
symmetric distributions. The rows correspond to different thickness
of the tails with the “normal” providing the bench mark. The central
block containing 60 percent corresponds to returns that are “roughly”
normally distributed (+/- two standard deviations). There is a significant
occurrence of distributions of returns that are thick tailed and skewed.
Approximately 30 percent of the stocks have distributions that are
significantly positively skewed, and about the same percentage have tails
much thicker than the normal. The GB2 distribution provides a signifi-
cantly better fit to the distributions of these returns than the normal or
lognormal distributions.”

These results provide strong evidence that there are models which
provide a better fit to stock returns than the commonly used models. A
number of methods of analysis used in finance are implicitly based upon
assumptions of normality or lognormality of returns. These include
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methods such as the Black-Scholes formula for determining the value of
options as well as methods of estimating the risk of a stock or portfolio
as represented by the betas. The results from both of these methods are
sensitive to the underlying distribution of returns. Statistical distribu-
tions provide the basis for some exciting research in many areas in

finance.
I have found statistical distributions and their various applications

to be an exciting area to study. I believe this work has important appli-
cations in many areas. As I reflected on this, I came across a statement
made by Francis Galton in the introduction to his book Natural Inheri-
tance, which expresses my feelings about the topic and provides a fitting

note to end on.

The road to be traveled over is full of interest of its own. It familiarizes us
with the measurement of variability, and with the curious laws of chance
that apply to a vast diversity of social subjects. This part of the inquiry may
be said to run along a road on a high level, that affords wide views in
unexpected directions and from which easy descents may be made to totally
different goals to those we have now to reach. I have a great subject to write

upon.”
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